
Declaration of Contribution

The research completed and presented within this document is declared to
be completed by the author except where otherwise mentioned and/or cited.
Much research was conducted by the author in MATLAB where the radial
basis function neural network was implemented and code output was plotted.
In the research results, one section on the Lorenz attractor analysis displays
and discusses research conducted by the project partner Kyla Klein. With
this exception, all research results were authentically produced solely by the
author unless otherwise cited.

1

Artificial Neural Networks and the
Prediction of Chaos

by Thomas J. Prince
researched in conjunction with Kyla Klein

Supervised by Charles Unsworth, The University of Auckland

Date of Publification: 30th October 2020

Abstract

Chaos and its field of study relates to deterministic dynamical systems with
aperiodic and bounded trajectories that have sensitive dependence on initial
conditions. These systems are globally stable, however, locally unstable.
Similar nearby trajectories diverge exponentially from eachother but the
differing orbits show fractality and self-similarity. Using chaos theory, one
can analyse and quantify the complex dynamical behaveiour of nonlinear
time-series.

The Lorenz equations model fluid convection. With the right parameter
values, these differential equations produce a chaotic, non-linear, time-
continuous, and time-invariant dynamical system in three dimensions. The
equations are as follows:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)

dz

dt
= xy − βz

where σ, ρ, and β are parameters. Classically used chaotic producing
parameters in the Lorenz equations are the values σ = 10, β = 8

3
, and

ρ = 28.

A joint project aim was to develop chaos theory algorithms to analyse the
Lorenz chaotic attractor, then employ the use of artificial neural networks to
predict its future behaviour. This report focusses on artificial neural network
models, in particular, the radial basis function neural network. Within this
research, radial basis function neural networks have been implemented to
predict future behaviour of the Lorenz dynamical system, firstly, by using a
tapped delay line of a single variable’s orbit and varying embedding delay
and dimension. Similar networks were constructed to take a full three-
dimensional Lorenz state input and predict successive states.

i

Research outcomes determined that a radial basis function neural
network was able to be trained to fit a Lorenz variable’s chaotic orbit so to
successfully predict its dynamical behaviour from a beginning tapped delay
line of given embedding dimension. Depending on parameters used in the
network and which variable was being predicted, predictions of up to 8 units
of time followed a computed orbit. Additionally, it was found that the x
individual variable’s information could be used to predict other variables
and even reproduce the complete three-dimensional structure of the Lorenz
system.

Using an entire Lorenz state as input provided significantly more
information to the neural network which was reflected in its output and
performance. An actual computed orbit could be followed arbitrarilly close
by a predicted orbit for up to approximately 15 units of time in some
simulations. Regardless of the fact that the prediction diverged from the
computationally solved trajectory, high-level behaviour of the system’s
dynamics were observably retained in the prediction. Considering the
implications of sensitive dependence on initial condition poses the question
– could the predicted orbit not be “correct” to shadow some other orbit
after it diverges from the numerically computed one?

In application to real-life signals, the performance of a radial basis
function neural network on noiseless chaotic attractors shows promise.
Networks appeared to be able to capture the overall high-level behaviour
of the Lorenz chaotic attractor, such as the boundedness of orbits
and their aperiodicity. Application of networks to signals such as the
electroencephalogram would make for suiting subsequent research to that
completed and delineated within this report.

ii

Acknowlegement

The following document results from the conclusion of four years at the
University of Auckland in my decided Engineering Science specialisation
programme. First thanks must go to my parents and extended family,
who have always been supportive of whichever educational or occupational
pathway I decide to endeavour upon. Their support, both financial and
emotional, has been invaluable. I would not be where I am today without
them. Charles Unsworth, the supervisor of this honours project, must
subsequently be acknowledged for the much appreciated and required project
direction and knowledge imparted. He had our best interests at heart.
Artificial neural networks and chaos theory are not trivial topics. Without
his help, I would have certainly remained lost and clueless on the subject.
Finally, to my project partner Kyla Klein who conducted her part of the
research on Chaos Theory analysis. I was priviledged to have been able
to work alongside such a competent individual. This past year has proven
difficult, particularly due to the COVID-19 pandemic and its resulting
impairment on structured in-person learning and induced additional stress.
Regardless, Kyla and myself have withstood the worst and should be pleased
with the finished final reports pertaining to this ENGSCI 700 honours
project.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

2 Literature Review 2
2.1 Chaos Theory . 2

2.1.1 Literature Survey . 2
2.1.2 Description of Research 3

2.2 Artificial Neural Networks . 4
2.2.1 Literature Survey . 4
2.2.2 Description of Research 5

3 Research Methodologies 8
3.1 Introduction to Chaos . 8
3.2 Sampling the Lorenz Attractor 9
3.3 Input Data Normalization . 10
3.4 The Radial Basis Function Neural Network 11

3.4.1 Single Variable Prediction 13
3.4.2 Prediction from Three-Dimensional Lorenz State 14
3.4.3 Robustness of RBFNN Predictions 15

4 Research Results 16
4.1 Introduction to Chaos . 16

4.1.1 The Logistic Map . 16
4.1.2 Kyla’s results . 18

4.2 Sampling the Lorenz Attractor 20
4.3 Input Data Normalization . 21
4.4 Radial Basis Function Neural Networks 22

4.4.1 Single Variable Prediction 22
4.4.2 Prediction from Three-Dimensional Lorenz State 27

5 Discussion 32
5.1 Conducted Research . 32
5.2 Further Research Potential . 32

5.2.1 Parameter Optimization 32
5.2.2 Training Trajectories 33
5.2.3 Differing Neural Networks 34
5.2.4 Alternative Chaotic Attractors 34

5.2.5 Application to Real Observed Signals 34

6 Conclusion 35

Appendices 36
Appendix A: Single Variable Prediction 36

A.1: Pseudo Code . 36
A.2: x Variable Delay Coordinates 36
A.3: 3D Lorenz Prediction from Differing Variable Delay

Coordinates . 37
A.4: 3D Lorenz Prediction from x Trajectory – an Exploration

of Delay . 39
Appendix B: Lorenz State Prediction 43

B.1: Pseudo Code . 43
B.2: Varying Number of Centres 43

Appendix C: Matlab Code . 48
C.1: Lorenz Prediction . 48
C.2: Logistic Map . 53

References 56

List of Figures

1 Parts of a Neuron. The major parts of the neuron are labeled
on a multipolar neuron from the CNS ([14]). 6

2 RBFNN Diagraphic . 11
3 Gaussian Radial Function . 11
4 RBFNN Embedding Dimension Depiction 13
5 Bifurcation Diagram of the Logistic Equation 16
6 Varying Attracting Behaviour from the Logistic Map 17
7 Chaotic Behaviour from the Logistic Map 17
8 Logistic Sensitive Dependence on Initial Conditions 18
9 Correlation Dimension of Lorenz Attractor – from Kyla’s

Research . 19
10 x Variable Lorenz Mutual Information – from Kyla’s Research 19
11 Euler’s Method vs. Runge-Kutta Divergence 21
12 Euler’s Method vs. Runge-Kutta 3D Divergence 21
13 Lorenz Variable’s Mean and Standard Deviation Over Time . 22
14 Predictive Distance of Individual Lorenz Variables 23
15 Cumulative Absolute Error within Training 23
16 x Variable Prediction Example 24
17 x Variable Prediction with Differing Delay 25
18 Embedding Dimension for x Variable Trajectory at Delay of 15 25
19 x Variable Prediction with Differing Number of Centres (M) . 26
20 All Variable Predictions using Delay Coordinates of x 27
21 RBFNN Reconstruction of Lorenz Attractor using Delay

Coordinates of x . 27
22 Lorenz Attractor in Phase Space from Identical Initial Condition 28
23 Lorenz Three-Dimensional Trajectory Prediction from a Single

Random Starting State . 28
24 Visualization of Diverging RBFNN Predicted and

Computationally Solved Trajectories 29
25 RBFNN Reconstruction of Lorenz Attractor from a Single

Starting State . 29
26 Lorenz Attractor in Phase Space from Identical Initial Condition 30
27 Apparent Aperiodicity of the RBFNN Reconstruction of a

Lorenz Attractor . 31

Abbreviations

ANM Artificial Neuron Model

ANN Artificial Neural Network

EEG Electroencephalogram

MLP Multilayer Perceptron

NARX Nonlinear Autoregressive Exogenous Model

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

SDIC Sensitive Dependence on Initial Conditions

1 Introduction

The allocated project was Engineering Science Project 57: Chaos Theory
Modelling & Artificial Neural Network Prediction of Time-Series from
Lorenz Chaotic Attractors & Brain Signals. Two distinct roles divided the
project, with the use of Artificial Neural Network (ANN) models being
the primary focus of this research. Kyla Klein has undertaken work in the
area of chaos theory model analysis. An ideal joint project outcome was
decidedly defined so to analyse the Lorenz chaotic attractor using chaos
theory algorithms, then predict its future behaviour using ANN models. In
this report, research has been undertaken using the Radial Basis Function
Neural Network (RBFNN). This network has demonstrated strong ability
to predict and reconstruct time-series produced through computationally
solving the Lorenz equations.

Sections that constitute this report include a literature review, research
methodologies, research results, a discussion, summary, and conclusion.
A detailed literature review on existing studies and literature relevant to
this project was undertaken. It has the purpose of providing sufficient
background knowledge so to grasp the context of the problem this research
addresses. Research conducted involves use of the RBFNN to predict the
future dynamics of the Lorenz system. Using two methods of prediction, the
network proved successful in predicting the future dynamical behaviour of
the Lorenz attractor.

The first method of prediction outlined within this research included the
use of a tapped delay line of a single variable’s orbit as the input to the
RBFNN. Subsequently, the Lorenz dynamics were predicted using its three-
dimensional state as input, where the network was trained to predict its
successive state after a time dt had passed. Both methods proved successful
and displayed impressive results.

1

2 Literature Review

This literature review enumerates some existing research in attempt to
provide a sound foundation for the necessary relevant concepts pertaining
to this report. The purpose of this review is to firstly survey existing
studies and literature that are relevant to the project then describe them
in a comprehensive manner. A referenced exploration of research conducted
to date provides sufficient background knowledge within the area of research
so to grasp the context of the problem, the issues the project intends to
address, and hence the overall motivation behind this project.

2.1 Chaos Theory

The notion of chaos is an essential concept within this research. As stated
by Priddy et al.: ‘Since neural networks are data driven, the adage garbage
in, garbage out is highly relevant to the task of building a neural network ’
([1]). Understanding fundamental chaos theory concepts hence supports
the endeavour to properly collect, prepare, label, and code the data later
extracted from the Lorenz equations into a high-functioning artificial neural
network.

2.1.1 Literature Survey

Complexity Explorer’s online course Introduction to Dynamical Systems and
Chaos [2] begins with fundamental concepts assuming only a high-school
equivalent level of mathematics, hence making the source accessible and
intuitive. After describing the concept of functions, it delves deeper into the
realm of dynamical systems and iterative processes where the notion of chaos
is introduced and defined. Through this process, concepts such as orbits
(or trajectories), phase spaces, fixed points and their stability, attractors,
periodic behaviour, limit cycles, bifurcations, differential equations, and
determinism are presented and explained. Finally, the three-dimensional
continuous time Lorenz and Rössler attractors are introduced and discussed,
as well as the concept of stretching and folding being the foundation on
which chaotic behaviour depends on.

Kautz’s book Chaos: The Science of Predictable Random Motion [3]
delves deeper into the theory, providing further completeness to the overall
picture. A multitude of examples are addressed and discussed which
delineate chaotic properties and analytical methods. The book contains
two chapters of significance with relevance to the research conduct. One

2

pertains to the butterfly effect; a popular alternative term to Sensitive
Dependence on Initial Conditions (SDIC) coined by Edward Lorenz in his
1972 presentation to the American Association for the Advancement of
Science [4]. The second discusses prediction and how return maps can show
some insight into a dynamical systems forthcoming behaviour.

Edward Ott’s book Chaos in Dynamical Systems [5] discusses further
chaotic properties, observations, and analytical methods. One such mention
is of delay coordinates which are later used as RBFNN inputs in this research.

The Lorenz attractor is that which is being predicted, and suitingly,
Lorenz’s book The Essence of Chaos was reviewed. The book introduces
and describes chaotic concepts, with particular sections on SDIC described
through the notion of a pinball machine and a trajectory down a ski slope.

2.1.2 Description of Research

The modern scientific term deterministic chaos refers to irregular and
unpredictability of a deterministic dynamical system over time [6]. In the
study of dynamical systems, such a system is considered chaotic if [2]:

1. its rule is deterministic,

2. its orbits are bounded,

3. its orbits are aperiodic,

4. it has sensitive dependence on initial conditions.

Determinism, simply implies the following of strict rules. The present state
of a deterministic system is, in theory, fully defined by its initial or previous
conditions [7]. It means there is no stochasticity or randomness [7].

Systems that vary in discrete steps are known as mappings [8]. The
mathematical notion of describing deterministic mappings is called a
difference equation [8]. For time-continuous systems, the motions ae known
as flows, with the descriptive equation being a differential equation [8].

Chaotic orbits must have sensitive dependence on initial conditions.
Simply stated: ‘for any initial condition x0, other initial conditions very near
to it eventually end up far away ’ ([2]). This means that trajectories that
begin very near to eachother diverge and don’t follow eachother indefinitely.

3

The concept of an attractor is such that there exists an attracting set
in the phase space i.e. a non-zero bounded subset, which regions of initial
conditions asymptote as time continues [5]. An attractor is strange if [2]:

1. nearby orbits get pulled into it i.e. it is stable,

2. motion on the attractor is chaotic.

In some experiments, not all components of a system’s multi-dimensional
state can be measured [5]. If only one component (i.e. one scalar function of
the state vector) can be measured, delay coordinates can be taken which can
make a surface of section revealing fractal structure of the whole dynamical
system [5]. This notion is applied later in research where delay coordinates
are used for prediction. Kyla’s results of mutual information also brush on
this concept, where a return map is of x(t) against x(t+01.5) is shown which
resembles the fractal and aperiodic characteristics observed in the Lorenz
attractor.

2.2 Artificial Neural Networks

2.2.1 Literature Survey

A detailed and comprehensible explanation of the biological neuron model
(or nerve cell) is contained in Chapter 48 of Campbell Biology [9]. The
textbook chapter expounds the nerve cell, action potentials, and the brain
in a comprehensive manner, as well as expanding on the biological and
chemical occurences at the cellular level.

Seo’s 2014 thesis An Artificial Muscle Neuron [10] provides a well-
researched introductory section on the biological neuron, then briefly
discusses its mathematical abstraction into the Artificial Neuron Model
(ANM). Principal components and concepts pertaining to an ANM and how
it models a biological nerve cell are discussed.

McCulloch and Pitts’ article A Logical Calculus of the Ideas Immanent
in Nervous Activity [11] is considered a classical text in the field, where
although the mathematics is obscurely notated, it laid a foundation for
which many built upon with its influential mathematical model of the neuron.

Krenker’s Introduction to the Artificial Neural Networks is a found
within a collation [12] and provides a more recent approach to describing
the concept of an artificial neural network. It contains a comprehensive

4

introductory section on the artificial neuron model.

Bishop’s Neural Networks for Pattern Recognition [13] is a textbook
which explains the ideas pertaining to ANNs clearly and consistently,
predominantly using linear algebra, calculus, and probability theory.
Relevant chapters to this research detail the perceptron, the Multilayer
Perceptron (MLP), and the RBFNN. Additionally, the book contains much
information that could be applied and drawn upon for further research such
as parameter optimization and network generalization.

Priddy and Keller’s book Artificial Neural Networks: An Introduction
[1] covers almost all of that previously mentioned. It discusses neurons and
the ANM, different learning methods, and data normalization, as well as
providing a multitude of emperical examples from different neural networks
and their solutions to problems.

2.2.2 Description of Research

ANNs such as the RBFNN and MLP have their foundational
conceptualization in the biological neuron model [12]. Neurons (or nerve
cells) receive and transmit signals to and from other cells [9], [10], [12]. The
transmitting neuron is referred to as the presynaptic cell whilst the nerve,
muscle, or gland cell which receives the signal is termed the postsynaptic
cell [9]. Key components of the biological neuron (or spiking neuron) model,
which are relevant to its abstraction into an artificial neuron model (ANM),
include the cell body (or soma), axon, and dendrites [1], [9], [10]. A nerve
cell’s dendrites are like tree roots extending from the soma, reaching out to
collect electrochemical information from the surrounding area so to induce
stimulation of the cell body [9]. Axons belonging to other neurons can also
stimulate the nerve cell through their connected synaptic terminals [9]. Every
neuron has some threshold of voltage (or excitation) which must be overcome
in order to fire [11] i.e. send an action potential electrochemical signal [9],
[10]. These sent signals travel from the soma, along the neuron’s axon,
which then in turn stimulate other cells [1], [9]. Through the human brain’s
approximately 1011 neurons [10], practically all experience, thought, logic,
and emotion is processed through these communicating cells called neurons
[9]. A diagram of the biologial neuron is depicted below:

5

Figure 1: Parts of a Neuron. The major parts of the neuron are labeled on a
multipolar neuron from the CNS ([14]).

An ANM is the derived functional model of the biological neuron [10],
[12], and is the fundamental building block of any more complicated ANN
[12]. Just as the biological nerve cell is the building block for our neural
networks i.e. brain and nervous system. An artificial neuron receives an
input from one or more sources, then produces an output [1], [10]. Each
input into the neuron is weighted, then the sum of weighted inputs (and the
neuron’s bias) is passed into a transfer function which produces an output
[1], [10], [12]. Some common transfer functions are sigmoid or step functions.
In general, the output of an ANM is calculated as per below [1]:

y = f(
N∑
i=1

wixi) (1)

where y is the output, f is the activation function, x is the input vector of
dimension N , and w is the vector of weights. The neuron’s logical output
provides information about the input through its output, and hence through
adjusting the weights i.e. training the ANM, the artificial neuron can make
sense of external inputs by providing a meaningful output. Validation and
generalisation of ANMs are important once a neuron has been trained.

The ANM is the fundamental component of which the MLP comprises
[1]. With a network implementation, however, multiple layers of neurons
will exist [1], [15]. As with the ANM, training, validation, and generalisation
must all occur in order to establish a plausible ANN [13], [15]. There are
many different structures an ANN can take, with feed-forward being one
such structure [12]. This is arguably the simplest structure and both the
MLP and RBFNN is included in this category [13]. In this structure, there
is no feed-back, information flows in one direction, from the input towards

6

the output.

A radial function has the characteristic that its response is dependent
on its inputs distance from a central point [16]. From Charles’ notes, a
basis function is aptly described: ‘A basis function is a shape (or continuous
function) with the special mathematical property that a linear combination of
the basis function can be used to represent any other continuous mathematical
function’ ([16]). Such functions include fourier transforms which can fit any
periodic function using a linear superposition of an infinite series of sinusoids
[16]. The Gaussian function is an example of a radial basis function [13],
[16]. Its response is dependent on its input’s distance from its centre. A
linear combination of Gaussian functions can be used to represent any other
function [16]. The Gaussian function is of the following format:

y = ae−
(x−c)2

2r2 (2)

where a is the height of the function, c is the function’s centre, x is its input,
and r is its width.

The RBFNN is a type of feed-forward neural network which provides a
smooth interpolation of a given input-output mapping [13]. Parameters for
the fitting, given a number of input vectors (N) and their associated output
targets, are the number of RBFNN centres (M) and the width parameter
of each basis function (r) [13]. A matrix of Gaussian outputs which are
dependent on each input vector’s (xi) distance from each centre (cj) is
computed [13], [16], normalized [16], then trained to best map the input
vectors to their desired outputs through matrix inversion techniques [13].
These trained mappings can then be used for out of sample prediction.

7

3 Research Methodologies

Methods used and results sought after changed dynamically based on
progress made, new perspectives or considerations, research direction advice
received, and constant revisions and development of earlier work. For the
sake of conciseness, only the most significant final research results and their
respective methodologies of production are delineated.

An introduction to chaos follows a comprehensive succession of simulation
based results that explain the essence of chaos then link back to research
conducted by Kyla on chaotic analysis. Succeeding this, the method to
be used for sampling the Lorenz attractor is determined and comments are
made on SDIC and the shadowing lemma. RBFNN implementation is then
delineated, showing multiple different approaches taken in predicting future
Lorenz dynamical behaviour. These approaches include taking equidistant
samples of a single variable’s trajectory and predicting its successive points,
as well as using more information from the Lorenz system for the neural
network’s input such as its full three-dimensional state and training to predict
successive states.

3.1 Introduction to Chaos

Understanding the fundamentals of chaos is intrinsic to understanding the
problem at hand. The one-dimensional iterative logistic map and its
bifurcations are explored and explained, which help comprehension through
emperical and observable chaotic concepts. The logistic map follows the
following deterministic rule:

xn+1 = rxn(1− xn) (3)

where the initial condition x0 ∈ (0, 1) and the single parameter r ∈ (0, 4).
Depending on the parameter value chosen, it will be shown that the map
can act as an attractor to a single point, periodically, or chaotically. The
bifurcation diagram for the map will be produced and briefly discussed.

Results from Kyla’s research were drawn upon and mentioned, which
were used in deducing or affirming parameters of RBFNN parameters.
Kyla’s research results include the embedding dimension of the Lorenz
attractor and the x variable’s mutual information.

8

3.2 Sampling the Lorenz Attractor

Computers do not store numbers to infinite precision. Due to SDIC, following
a specific chaotic orbit over any substantial period of time would require
infinite preceision. Additionally, the Lorenz equations are time-continuous.
In solving its differential equations computationally, we must discretize the
system. The use of different time steps dt will produce discrepency between
their predictions and the real orbit given the initial condition. The fact that
time steps greater than 0 are used in solving the system creates error in the
calculated orbit against the “real” trajectory, which become intrinsically
significant due to their exponential divergence due to SDIC. Using differing
computational methods in solving the equations will have the same effect
and produce different solutions and hence diverge.

The 4th order Runge-Kutta method was chosen to create a computational
solution to the Lorenz differential equations. For its use in the RBFNN, a
time step of 0.01 was used between samples. The method numerically solves
the time-continuous differential equations as follows:

let s(t) = st be the current state at a given time t i.e. st =

xy
z

let h be the timestep for computationally solving the time-continuous
differential equations, in our case h = 0.01

f(st) = ṡ(t) =
d

dt
(st) =

dx
dt
dy
dt
dz
dt

st+dt = st +

1

6
h(k1 + 2k2 + 2k3 + k4)

k1 = f(st)

k2 = f(st + h
2
k1)

k3 = f(st + h
2
k2)

k4 = f(st + h · k3)

(4)

9

3.3 Input Data Normalization

Pre-processing of data is used in most signal processing applications. Though
it is more of a neccissity for networks such as the MLP to normalize data
for its activation functions, it is also advisable for other networks and even
general scrutiny of data. Statistical normalization was chosen as the method
of use. This follows the following rule [13]:

x̂ni =
xi − x̄i
σi

(5)

where x̂ni is the normalized nth input of the ith variable, xni is its unprocessed
observed input, x̄i is the ith variable’s mean, and σi is the ith variable’s
standard deviation.

The mean and standard deviation were extracted from computationally
produced Lorenz trajectories using the following [13]:

x̄i =
1

N

N∑
n=1

xni

σ2
i =

1

N − 1

N∑
n=1

(xni − x̄i)2
(6)

where N is the total number of taken samples.

10

3.4 The Radial Basis Function Neural Network

The RBFNN is a type of feed-forward neural network. A mapping from a n
dimensional input vector x to a singular output y is depicted in the below
diagraphic:

Figure 2: RBFNN Diagraphic

Radial Basis Function (RBF) parameters include its centre, and standard
deviation (or width) [16]. An example of such a function is the Gaussian
function which has the following shape: .

Figure 3: Gaussian Radial Function

11

The Gaussian function itself is of the following format [16]:

y = ae−
(x−c)2

2r2 (7)

where x is the input, c is the function’s centre, and r is the function’s width.
For their use in implemented RBFNNs, centres are selected uniformally
from within the training vectors.

A matrix of Gaussian kernels is formed by taking the Euclidean distance
between each input vector and each centre and taking the Gaussian response
[16]. The Φ Gaussian matrix for training is determined using the following:

Φij = e−
‖xi−cj‖

2

2r2 (8)

where xi is the ith training input vector and cj is the jth centre.

Charles’ notes [16] provide additional instruction to divide each row of
the Gaussian matrix (Φ) by the sum of all the kernel outputs on that row.
Such an action means that the summed outputs of all hidden functions for
any input variable are equal to one [16]. The normalization action is notated
below and was used in all implemented networks:

Φnorm
ij =

Φij∑M
j=1 Φij

(9)

Note that the pseudo inverse of a matrix A is defined [13], [16]:

A+ = (ATA)−1AT (10)

In the case of the neural network, we desire the mapping [13]:

ΦW = T (11)

where Φ is the matrix of normalized Gaussian outputs, W is the vector (or
matrix) of weights, and T is the vector (or matrix) of targets (or desired
outputs). The weights can be determined by manipulating the equations
[13]:

ΦTΦW = ΦTT

W = Φ+T
(12)

12

which guarantees optimal least-squares mapping between the inputs and
outputs using the Gaussian matrix [13].

Once weights have been determined (i.e. the network has been trained),
a RBFNN prediction is determined by its input. The Gaussian matrix Φ is
recalculated to be a single row vector using equation:

Φj = e−
‖x−cj‖

2

2r2 (13)

where x is the provided input. The matrix is normalized, then multiplied by
the weights to produce the networks output.

3.4.1 Single Variable Prediction

One cannot always measure all the components which give the state of
the system [5]. An example of this may be the Electroencephalogram
(EEG) signal, where electrodes are used to record electrical activity of the
brain. Obviously, the brain’s electrical activity is extremely complex and the
electrodes hence only capture some information of what is actually occurring.
To simulate this scenario, the data of a single variable’s trajectory was used in
prediction. The input to the RBFNN used that variable’s delay coordinates.
The figure below helps depict what is meant by this:

Figure 4: RBFNN Embedding Dimension Depiction

13

The black plotted line represents a computationally solved Lorenz x variable
trajectory with 0.01 units of time between samples. Using an embedding
delay of 15 means that every 15th sample is used in the input vector.
Combined with the embedding dimension of 3, the above figure depicts an
example of an tapped delay line input with the Lorenz samples circled in
red. The input is hence the vector [x0, x15, x30] of the computational sampled
solution. The desired output of the input is x45, as circled in blue. Training
error is observed and used as a comparitive measure of how well the RBFNN
fits the data. Error used was the absolute error between the trained predicted
values and their associated desired outputs.

RBFNN training occurs on thousands of vectors such as the example
above using a lengthy computed solution’s trajectory. Once trained, a
random starting tapped delay line (such as the one depicted and circled in
red) of the Lorenz attractor is passed to the RBFNN. The prediction of the
successive point is appended to the input vector and the first dimension of
the input vector (i.e. x0) is dropped. A new input vector is hence created
and the RBFNN predicts off its own previous predictions.

For comparative purposes when varying embedding dimensions or delay,
a proportionally consistent Gaussian radius was used which was dependent
on the maximum Euclidean distance between any two centres (dME). The
radius was shared between all centre’s hidden functions and was determined
by the following:

r =
2dME√

2M
(14)

3.4.2 Prediction from Three-Dimensional Lorenz State

The radial basis function neural network is a versatile structure which can
be adjusted by its programmer to map as many inputs to as many outputs
as desired. For this implementation of the network, the information passed
to the network was a Lorenz state, with its successive state after time dt
being the desired output. Error for the network would now be measured by
summing the absolute values of each predicted dimension’s error:

E =
3∑

i=1

|x̂i − xi| (15)

where E is the error of a prediction, x̂i denotes the predicted output for
the ith predicted variable, and xi is the desired ith output. The desired and

14

predicted outputs are intrinsically three-dimensional as are the Lorenz states.

Once the RBFNN predicts a state, the predicted state can then be
passed in as its input again. The network can perform this recursive action
indefinitely to create a prediction as far as desired.

3.4.3 Robustness of RBFNN Predictions

Once trained, a method of testing the network’s robustness was to observe
its prediction performance from random starting trajectories on the Lorenz
attractor. Ideally, the network would predict out of sample for similar
temporal distances regardless of where on the attractor it started from.

15

4 Research Results

4.1 Introduction to Chaos

4.1.1 The Logistic Map

The iterative function known as the logistic map is determined by the
following rule:

xn+1 = rxn(1− xn), x0 ∈ (0, 1) (16)

The logistic map portrays varying attracting behaviour with values of its
parameter (r) between 0 and 4. For values ranges [17]:

� r ∈ (0, 1), single attracting point at zero

� r ∈ (1, 3), single attracting point at r−1
r

� r ∈ 3, 3.44949, attracts to period 2

� r ∈ 3.44949, 3.54409, attracts to period 4

� As r increases from 3.54409, the attracting period doubles i.e. to 8,
then 16, 32, 64, ..., until at 3.56995 where the behaviour is aperiodic.

So to picture what is occuring here, a bifurcation diagram is depicted
below:

Figure 5: Bifurcation Diagram of the Logistic Equation

The bifurcation diagram depicts the attracting behaviour of the logistic
map depending on its parameter value r. It was produced by running the
logistic map for a 10000 iteration warmup from x0 = 0.5, then vertically
scatter plotting the following consecutive 1000 values in the orbit above
its associated value of r. This process was implemented for one thousand

16

unique values of r equispaced between 0 and 4.

A 50 iteration with x0 = 0.5 is shown below for 3 different values of r.
Compare the observed behaviour to the bifurcation diagram:

Figure 6: Varying Attracting Behaviour from the Logistic Map

It is observable that the bifurcation diagram and the above 3 plots are
quite related. With the parameter value r = 3.4, the iterated values are
attracted to an orbit of period two, consistantly alternating between the
approximate values 0.45 and 0.85. In the bifurcation diagram, at r = 3.4
along the bottom axis, the corresponding values reinforce what is observed
in the iterative plotted orbit. At r = 3.7, there appears to be no observable
pattern in the plotted orbit. This is because there isn’t. In the bifurcation
diagram, the thousand scattered points appear to form a vertical line, roughly
between 0.25 and 0.9, above the value r = 3.7. Finally, with the parameter
r = 3.74, an attracting orbit of period 5 is observed. This periodic window
is clearly observable in the bifurcation diagram also. A longer chaotic orbit
of the logistic equation with r = 3.7 starting at x0 = 0.5 is depicted below:

Figure 7: Chaotic Behaviour from the Logistic Map

Chaotic orbits must have sensitive dependence on initial conditions.
Simply stated: ‘for any initial condition x0, other initial conditions very
near to it eventually end up far away ’ ([2]). This is depicted in the figure
below, where two initial conditions x0 = 0.3 and x0 = 0.3001 had their
orbits plotted together. One would expect, given the two initial conditions
are so close, that they would follow relatively identical orbits; and they do,
for a short time. By 20 iterations, however, the orbits bear no resemblence
to eachother; there would be no reason to think they would have started so

17

close together. This poses a problem for prediction, regardless of whether you
knew the deterministic rule that the dynamical system follows. You would
need infinitely accurate measurements to predict the system long term. In
the real world, measurements this accuracy are inherently meaningless due
to noise, and measuring to this degree of accuracy is often impossible.

Figure 8: Logistic Sensitive Dependence on Initial Conditions

The orbit of the logistic map iterative equations with parameter r =
3.7 satisfies all requirements of chaos. Obviously, it was produced by a
deterministic rule: xn+1 = 3.7xn(1 − xn). The orbit is bounded, values
produced in the orbit will never exceed 1 or become negative (in fact, for
r = 3.7, they vary between roughly 0.25 and 0.9). The orbit is aperiodic,
and hence never repeats itself or, by extension, it never returns to a value that
was previously observed in the orbit. Additionally, the orbits have sensitive
dependence on initial conditions as depicted earlier.

4.1.2 Kyla’s results

Results relevant to this research included the embedding dimension of the
Lorenz attractor, as well as the x variable’s mutual information. Using
the correlation integral applied to the Lorenz system, it was found that
the embedding dimension of the Lorenz attractor was 3. This is found by
analysing the linear region of the plotted lines and finding the dimension at
which the lines become saturated i.e. the gradient of the linear region no
longer changes.

18

Figure 9: Correlation Dimension of Lorenz Attractor – from Kyla’s Research

Kyla’s research results showed that the x variable’s first minima in the
mutual information was at approximately 0.15 units of time delay. The below
figure shows the minima in the curve, as well as the delay coordinate plot of
x(t) against x(t+ 0.15):

Figure 10: x Variable Lorenz Mutual Information – from Kyla’s Research

Emperically, it is observable that the delay coordinate plot corresponds to
chaotic behaviour similar to that observed in the Lorenz attractor. These
results formed the hypothesis that when using a tapped delay line of the
Lorenz x variable, a delay of 0.15 units of time and embedding dimension of
3 would be optimal for prediction.

19

4.2 Sampling the Lorenz Attractor

The question arisen is that if different methods produce significantly different
orbits, who is to determine which orbit is “correct”. Fortunately, the
shadowing lemma proves that a calculated orbit is arbitrarily close to some
other alternative real orbit, making such a computationally produced orbit
equally valuable and viable. This is a rigorously proved mathematical lemma
[5]. The lemma states:

Although a numerically computed chaotic trajectory diverges
exponentially from the true trajectory with the same initial
coordinates, there exists a true (i.e. errorless) trajectory with a
slightly different initial condition that stays near (shadows) the
numerically computed one. Therefore, the fractal structure of
chaotic trajectories seen in computer maps is real ([5]).

As earlier stated, the Runge-Kutta 4th order iterative method was chosen
for the temperal discretization giving a numerical approximate solution
to the Lorenz differential equations. Reasons for this is that it is a more
accurate numerical approximation than Euler’s method. Even though the
shadowing lemma disregards the need for “better” numerical approximation
due to divergence from a true trajectory and the shadowing of another,
the Runge-Kutta 4th method was chosen. This did result in the ability to
increase the time-step to 0.05 if desired, without the numerically computed
orbit diverging; a quality not shared with Euler’s method on the Lorenz
equations. Time-steps of this size were not used within RBFNN predictions,
however, were used in finding the mean and standard deviation of all Lorenz
variable’s trajectories. A larger range of plausible times between samples
could result in more room for parameter adjustment in determining best
RBFNN parameters, however, this has not been explored in this research.

Demonstrating the rapid divergence of equivalently valid trajectories is
shown in the below two figures:

20

Figure 11: Euler’s Method vs. Runge-Kutta Divergence

Figure 12: Euler’s Method vs. Runge-Kutta 3D Divergence

Observably, the two equally valid solutions to Lorenz trajectories diverge
almost instantaneously (after aproximately 0.5 units of time). This begs the
question of whether temporal predicted distance following a Runge-Kutta
computed orbit is a good measure of success for RBFNN performance.

4.3 Input Data Normalization

By computationally solving the Lorenz equations with timestep 0.05 and
recording 50 thousand samples, the mean and standard deviation over time
were computed and extracted. A simulation results are plotted below:

21

Figure 13: Lorenz Variable’s Mean and Standard Deviation Over Time

The outcome of the above simulation resulted in the following:

Mean: µ =

 0.0212
0.0217
23.4414

 Standard Deviation: σ =

7.9092
9.0305
8.7197

After running longer simulations and observing the found means and
standard deviations, for use in RBFNNs implemented it was decided the
following values would be used to statistically normalize the input:

µ =

 0
0

23.49

 σ =

7.92
9.02
8.68

4.4 Radial Basis Function Neural Networks

4.4.1 Single Variable Prediction

x, y, and z: Using a tapped delay line as input, each variable was
independently used for the RBFNN. In the case depicted below, an
embedding dimension of 5 and delay of 1 was used for prediction. 250 centres
were employed. Once trained, the RBFNN was tested from varying random
starting orbits on the attractor and the below figure depicts an example of
predictave performance observed:

22

Figure 14: Predictive Distance of Individual Lorenz Variables

Both variables x and z showed potential for being predicted individually
by the RBFNN. The dynamics of y appeard to be less predictable from
its own trajectory, and perhaps this shouldn’t be surprising. Remembering
the governing differential equations, y is the only variable whose gradient is
independent of its own state.

In-Training Measurements of Success: Training the RBFNN has
proven successful as per the above outcomes. Whilst training the neural
network, the error between each prediction and target from the mapping
between input and outputs was recorded. The network was provided 250
centres, used a Gaussian radius of 0.4, embedding dimension 3, and delay
1. As observable in the below figure, the cumulative absolute error increases
approximately linearly with respect to the number of training vectors:

Figure 15: Cumulative Absolute Error within Training

The above figure shows the cumulative absolute error over all 50000 training
vectors to equal to 0.3646, resulting in a mean error of 7.2918 × 10−6.
Regardless of this tiny error which suggests exceptional within sample
training of predictions, the predicted trajectory diverges from the computed
one after only approximately 2 units of time as per below:

23

Figure 16: x Variable Prediction Example

Embedding Delay: Using an embedding dimension of 3, 250 centres, and
a proportionately consistent Gaussian radius of r = 2dME√

2M
, embedding delay

was adjusted using the x variable’s tapped delay coordinates. At delay
of 1, the predictions followed the actual orbit for almost 3 units of time,
equating to 300 predictions. Increasing the delay to 5 resulted in further
temporal prediction of approximately 5 units of time (100 predictions but
almost twice as far temporally). Increasing the delay to 10 then to 15 both
resulted in further temporal prediction, where at delay 15, the Lorenz x
trajectory was followed by the predicted one for approximately 8 units of
time. Increasing the delay further saw a turn-around in performance. At
delay 20, the temporal prediction distance fell back to around 6 time units,
and at delay of 30 the predicted orbit diverged completely from the computed
one showing that as predictions are attempted further into the future, the
prediction targets become increasingly unpredictable.

24

Figure 17: x Variable Prediction with Differing Delay

Embedding Dimension: The embedding dimension was adjusted from
3 to both 2 and 5 and difference in predictive ability emperically noted.
Perhaps surprisingly, increasing the embedding dimension of the x delay
coordinates did not appear to improve performance. Decreasing the delay
from 3 to 2, however, did significantly decrease the RBFNNs ability to predict
the x variable’s trajectory.

Figure 18: Embedding Dimension for x Variable Trajectory at Delay of 15

Number of Centres: Experimentation with the number of centres in the
network and how it effects predictive performance was undertaken. Using an
embedding dimension of 5 and delay of 1, the number of centres was increased
so to observe difference in out of training sample performance. The Gaussian
radius was kept proportionally constant at 2dME√

2M
. More centres consistently

resulted in further predictive ability.

25

Figure 19: x Variable Prediction with Differing Number of Centres (M)

Lorenz Reconstruction: With the neural networks versatility to map any
input dimension to any output dimension, an attempt to predict all Lorenz
variable’s from the sole x variables tapped delay line was made. It was
found, that at embedding delay of 15, predictions were able to be made with
fair accuracy. The following results were produced by a RBFNN with 250
centres and uniform Gaussian radius of r = 0.4 on statistcally normalized
data input. The network was trained on 20000 vectors. Note that in this
case of the following figure, the predicted and sampled trajectories have been
plotted in their normalized state:

26

Figure 20: All Variable Predictions using Delay Coordinates of x

The real trajectory was followed by the predicted one for almost 30
predictions (4.5 units of time) from a single vector of 3 x delay coordinates
with time delay 0.15.

Figure 21: RBFNN Reconstruction of Lorenz Attractor using Delay Coordinates
of x

4.4.2 Prediction from Three-Dimensional Lorenz State

Training of the network proved that the RBFNN can fit the Lorenz attractor
exceptionally well. In the below figure, an example of training is depicted

27

using 20000 training vectors (i.e. Lorenz states) and 500 centres. The
centres are circled in red on the three-dimensional plot of the predictions.
An accumulated absolute error of just

Figure 22: Lorenz Attractor in Phase Space from Identical Initial Condition

The following figure was produced by a RBFNN taking a three-
dimensional Lorenz input state to predict successive states. This example
used a delay of 1 and dt of 0.01 with 250 centres and a specified Gaussian
radius of 4.

Figure 23: Lorenz Three-Dimensional Trajectory Prediction from a Single
Random Starting State

The length of accurate temporal prediction is high. The RBFNN’s
predictions follow the actual computed orbit for almost 15 units of time,
equating to 1500 predictions of successive state. A plot depicting the orbits
diverging in three dimensions is shown below, where 500 consecutive actual
orbit samples and predicted trajectories are plotted in state space adjacently,
starting from the corresponding 1000th prediction from the figure above:

28

Figure 24: Visualization of Diverging RBFNN Predicted and Computationally
Solved Trajectories

Regardless of diverging from the actual computed solution, the RBFNN
predicted orbits appear to have captured the high-level dynamical behaviour
of Lorenz variable trajectories. This statement is further reinforced by
plotting the predictions in three-dimensional state space. The figure shown
below is a RBFNN reconstruction of the Lorenz attractor of 100000 states:

Figure 25: RBFNN Reconstruction of Lorenz Attractor from a Single Starting
State

The reconstruction by the neural network could easily be mistakenly

29

identified as one produced authentically through solving the Lorenz
differential equations. From the same initial condition that was provided
to the RBFNN, the actual computed trajectory in phase space is depicted
below:

Figure 26: Lorenz Attractor in Phase Space from Identical Initial Condition

Both the real and reconstructed attractors are visually comparable,
demonstrating that the neural network really has captured the dynamics
of a Lorenz chaotic attractor exceptionally well. RBFNNs are intrinsically
deterministic and with being trained to predict Lorenz states, appears to have
captured the aperiodicity and boundedness of orbits. To demonstrate that
periodicity is not occuring, the final RBFNN output after 100000 predictions
was circled in red and has been zoomed in on below:

30

Figure 27: Apparent Aperiodicity of the RBFNN Reconstruction of a Lorenz
Attractor

The fact that the final point is not one which has previously been
predicted shows that a periodic limit cycle has not been converged upon by
the network after 100000 predictions.

31

5 Discussion

5.1 Conducted Research

From the research conducted, it is clear that the RBFNN approximates
and predicts Lorenz chaotic dynamic behaviour exceptionally well. Chaotic
dynamics, although notoriably random, appears predictable in the short
term as shown where a RBFNN is trained to predict the Runge-Kutta 4th

order solution of the differential equations. Additionally, it was shown that
using an embedding delay of 15 and dimension 3, the x variable’s trajectory
contained information that could reconstruct the three-dimensional
trajectories of an entire Lorenz attractor using RBFNN mappings.

Using a three-dimensional Lorenz state as input, the orbit of almost
15 units of time could be followed by the RBFNN. As earlier mentioned,
however, different equally valid solutions (such as that produced by Euler’s
method and Runge-Kutta) diverged over less than half a time unit. Could
this imply that the networks implemented have been overfitted to a single
method of computational solution?

5.2 Further Research Potential

This research scarcely scratches the surface of neural networks ability to
predict chaotic time series. Much further research within the field could be
undertaken and some ideas for such endeavours have been delineated.

5.2.1 Parameter Optimization

Both Lorenz sampling methods and the radial basis function neural
network have a number of parameters which can be adjusted including the
computational solution method used, time between samples (dt), number
of centres (M), number of training vectors (N), Gaussian radius (r),
and embedding delay de to name a few. Not only are these parameters
adjustable, but changing one individually has influence on the what is
optimal or even viable for other parameters. Many ideal parameter values
are interdependent. Within the research conducted, ad hoc methods were
predominantly used heuristically to find parameter values that appeared to
work well.

The Gaussian radii used in the hidden functions of the radial basis
function neural network is arguably the most important parameter. As

32

mentioned above, ad hoc adjustment and emperical comparison of results
was often employed as the method for determining parameter values
within this research. For comparitive purposes of some outputs, the radius
was chosen to be consistently dependent on the maximum Euclidean
distance between centres (dME) and the number of centres used (M).
This provided some sense of conviction that outputs were being fairly
compared, however, is this actually the case? One of the examples where
a consistent radius across centres was applied is where embedding delay
of the x variable was explored. Maximum distance between centres (dME)
would change due to embedding delay (de); and hence the radius used
in the Gaussians would change proportionally. Whether or not this was
a fair comparative technique is at question. Ideally, each comparison of
delay should be made using optimal corresponding parameters for best out
of sample performance. Bishop mentions the option of giving each basis
function its own width σj whose value can be determined during training [13].

Temporally equidistantly spaced centres extracted from the training
sample were used in RBFNN implementation throughout this research.
These provide no guarantee of being well-placed or effective centres, however,
with a higher quantity the likelihood is increased. Other techniques for
determining centres could be to create or seclect them randomly, or to
manually choose suspected good centres. No research within this report
considered centre selection, however, speculation into whether the Lorenz
attractor’s fixed points could be good centres, or whether certain spaces
require more or fewer centres for accurate prediction could be an interesting
consideration.

5.2.2 Training Trajectories

The training of networks implemented occured using a Lorenz trajectory
of user determined length from an established point on the attractor. All
training and validation orbits were computed using Runge-Kutta 4th order
solution methods. These orbits, depending on length, capture much of the
dynamical behaviour, however, miss areas very close to the two fixed points
in the centres of the three-dimensional orbits. Exploration of multiple
user determined training trajectories such as those starting close to, and
diverging from, the fixed points may provide additional information to
the neural network necessary for higher completeness of captured Lorenz
dynamics.

The question of whether the network may have been overtrained to fit the

33

Runge-Kutta 4th order solution of a trajectory arises. Training on multiple
trajectories produced using differing solution methods may provide higher
generalization ability to the neural network. After all, differing trajectories
due to solution method used from equivalent initial conditions are both
equally valid as proven by the shadowing lemma. Additionally, comparing
predicted orbits to a single method of trajectory computation could be
problematic. Perhaps for validation of the network, the predictions could be
compared to multiple trajectories from comparable initial conditions rather
than just a single computed orbit. Ultimately, what is most important, is
that the high-level dynamics of the system is captured. The use of how far a
neural network predicted orbit can follow a computed one may be an unwise
measure of performance.

Finally, training of the neural networks within this research was
undertaken on noiseless computationally solved Lorenz signals. An
introduction of noise may change the performance of the RBFNNs predictive
ability. A better generalization of the network may ensue.

5.2.3 Differing Neural Networks

The RBFNN was used within this research for the prediction of Lorenz
trajectories and was found to perform extraordinarilly well. A quantitative
and qualitative comparison between its performance and that of other neural
networks, such as the MLP or a recurrent network such as a Nonlinear
Autoregressive Exogenous Model (NARX), could form the foundation for
futher research and provide further insight into optimal methods for
predicting nonlinear time-series.

5.2.4 Alternative Chaotic Attractors

The RBFNN proved to perform exceptionally well in predicting Lorenz
dynamics, however, is similar predictave ability universal between other
chaotic systems? Dynamical systems such as the Rösler attractor, logistic
map, and Henon map also display chaotic behaviour. The use of a RBFNN or
other networks on these systems provide additional further research options.

5.2.5 Application to Real Observed Signals

Real signals such as EEG appear chaotic in nature. Using EEG signal orbits
and using a RBFNN to predict their future dynamics would provide scope
for much interesting research.

34

6 Conclusion

The radial basis function neural network proved to be an excellent
method for function approximation and prediction of the future dynamical
behaviour of chaotic attractors. Long-term behaviour of a chaotic orbits
could not be predicted accurately to follow a specific computed orbit,
which is unsurprising due to the intrinsic chaotic characteristic of sensitive
dependence of initial conditions (or the butterfly effect). No matter how
well-trained or resilient a predition method is, application to chaotic
trajectories will always diverge exponentially.

Not only does divergence occur between very similar trajectories from
slight difference in initial conditions, it was also observed that equally
valid trajectories solved using differing computational methods diverged
almost instantaneously from eachother, regardless of the fact that they
started from the exact same initial condition. This leads to the concern
that temporal length of prediction matching a computed orbit may not
be a good method of network validation. Instead, the observation of
aperiodicity and emperical continuation of observed high-level dynamics
may be a preferable indicator of successful neural network chaotic prediction.

The first network implemented involved prediction from a single variable,
namely, the x variable of the Lorenz system using a tapped delay line.
Prediction of its own trajectory as well as the dynamics and position of
other variable’s trajectories, were captured by the neural network using only
the x variable’s delay coordinates in embedding dimension 3 and with a
delay of 0.15 units of time.

Finally, prediction of successive states from a current state using a radial
basis function neural network performed exceptionally. The network was
able to follow the flow of a computed trajectory for almost 15 units of a time
from a single starting state. Reconstruction of the attractor in phase space
from using the network’s predictions visually resembled the actual attractor
almost exactly. Additionally, the neural network appeared to also capture
the aperiodicity, a characteristic shared with that of a real chaotic attractor.

35

Appendices

Appendix A: Single Variable Prediction

A.1: Pseudo Code

Pseudo Code for RBFNN Single Variable Prediction

A.2: x Return Map with Varying Delay

With both delay 1 and 15, it appears that the dynamics were captured for
the x variable’s trajectory. As per outcomes delineated within the report,
however, the temporal prediction length was greater with delay 15.

36

x Return Map with Delay 1

x Return Map with Delay 15

A.3: 3D Lorenz Prediction from Differing Variable Delay
Coordinates

At delay 15 i.e. 0.15 time units, it was found that both the x and y variables
with an embedding dimension of 3 were able to reconstruct the high-level
dynamics of a Lorenz attractor.

37

x Delay Coordinates

y Delay Coordinates

38

z Delay Coordinates

A.4: 3D Lorenz Prediction from x Trajectory – an Exploration of
Delay

An embedding dimension of 3 was used for the following results with varying
embedding delays. The RBFNN had 250 centres. These results further
reaffirm the use of time delay 0.15 units in the x trajectory in opening up the
attractor and making predictions. The delay of 15 at dt = 0.01 appears to be
most important and required when predicting external variable trajectories
from the x variable’s tapped delay line.

39

Embedding Delay 1

Embedding Delay 5

40

Embedding Delay 10

Embedding Delay 15

41

Embedding Delay 30

42

Appendix B: Lorenz State Prediction

B.1: Pseudo Code

Pseudo Code for RBFNN Lorenz State Prediction

B.2: Varying Number of Centres

Although it was found within the report that additional centres helped
tremendously for prediction of a single variable off it’s own tapped delay
line, the same was not observed using three-dimensional state prediction.
Regardless, the attractor and overall dynamical behaviour of the Lorenz
attractor was captured and the divergence is to be expected due to SDIC.
The results show that as few as 100 centres can accurately follow a computed
trajectory for approximately 12 units of time. Use of as few as 10 centres,
however, showed that the overall dynamical behaviour of the Lorenz attractor
can still be captured with very little information. These results used a
RBFNN with consistently proportionate Gaussian radius of r = 10dMEde√

2M
which was trained on 20000 training vectors.

43

Prediction with 10 centres

Prediction with 25 centres

44

Prediction with 50 centres

Prediction with 100 centres

45

Prediction with 250 centres

Prediction with 500 centres

46

RBFNN Reconstruction of Lorenz Attractor using 10 Centres

47

Appendix C: Matlab Code

C.1: Lorenz Prediction

48

30/10/20 11:10 AM C:\EngFiles\ENGSCI700...\appendixA.m 1 of 4

%{

Centres are chosen to be equally spaced

% Author: Thomas Prince.

%}

clear
clc

% --
% Input these values:
% --

% Integer number of points to skip before sampling. Note that these are
% skipped with at a spacing of dt and that delay does not affect this.
nskip = 2000;
% Integer number of vectors to train on.
ntrain = 20000;
% Start position for the warmup of the Lorenz sampling.
rng(1);
startpos = [rand; rand; rand];
% Time between samples.
dt = 0.01;
% Lorenz parameters [sigma, beta, rho]. Classically [10, 8/3, 28].
pars = [10, 8/3, 28];
% Variable(s) to use as input for prediction. [x y z] => [1 2 3].
var = [1];
% Variable(s) to try and predict. [x y z] => [1 2 3]. Note that all
% input variables must also be predicted variables due to the nature of the
% network using successive predictions for further prediction.
pred = [1];
% Integer embedding dimension. The number of consecutive samples used
% for predicting an equidistant subsequent point in the orbit.
de = 3;
% Integer embedding delay. How many sampled points between predictions.
delay = 1;
% Integer number of centres. Note that there must be more training vectors
% than centres due to the fact that centres are chosen to be equidistantly
% spaced training vectors. If it is larger, than duplicate centres will
% inadvertently be created.
M = 250;
% Number of RBFNN predictions to validate on.
validate = round(1200/delay);
% Specified Gaussian radius. If r = 0, then the radius will be determined
% in the algorithm. r must otherwise be greater than 0.
r = 0;
% Binary for z-score normalization of input/output data.
normalize = 1;
% Integer number of validation tests from a random starting orbit on the
% Lorenz attractor
rtest = 3;

30/10/20 11:10 AM C:\EngFiles\ENGSCI700...\appendixA.m 2 of 4

% --
% Samples the Lorenz equations
% --

warmup = lorenz(delay*(nskip+de), startpos, dt, pars);
nextstart = lorenz(1, warmup(:,nskip*delay), dt, pars);
trainsample = lorenz(delay*(ntrain+de), nextstart, dt, pars);

mu = [0; 0; 23.49];
sd = [7.92; 9.02; 8.68];

if normalize
 trainsample = (trainsample - mu)./sd;
end

% --
% Trains the RBFNN
% --

trainvecs = zeros(ntrain, length(var)*de);
traintarg = zeros(ntrain, length(pred));

for i = 1:ntrain
 temp = trainsample(var, delay*(i+(0:de-1)));
 trainvecs(i, :) = temp(:)';
 temp = trainsample(pred, (i+de)*delay);
 traintarg(i, :) = temp(:)';
end

centres = trainvecs(floor(linspace(1,ntrain,M)), :);

if r == 0
 d = zeros(M);
 for i = 1:M
 for j = i+1:M
 d(i,j) = sqrt(sum((centres(i,:) - centres(j,:)).^2));
 end
 end
 d = d + d';
 a = mean(mean(d,2));
 dme = max(max(d));
 r = 10*de*dme/(delay*sqrt(2*M));
end

phi = zeros(ntrain, M);
for i = 1:ntrain
 for j = 1:M
 phi(i,j) = exp(-sum((trainvecs(i,:) - centres(j,:)).^2)/(2*r^2));
 end
end

sums = sum(phi,2);
w = pinv(phi)*traintarg;

30/10/20 11:10 AM C:\EngFiles\ENGSCI700...\appendixA.m 3 of 4

trainpred = phi*w;
error = abs(traintarg - trainpred);
meanerror = mean(error);
cumerror = cumsum(error);

% --
% Validating the network from the end of the training sample
% --

nextstart = trainsample(:, delay*ntrain);
valsample = lorenz(delay*(validate+de), nextstart, dt, pars);
if normalize
 valsample = (valsample-mu)./sd;
end
valvecs = zeros(validate, length(var)*de);
temp = valsample(var, 1+(0:de-1)*delay);
valvecs(1,:) = temp(:)';
phi = zeros(1,M);
preds = zeros(validate, 3);
predict = zeros(validate, length(pred));
for i = 2:validate+1
 for j = 1:M
 phi(j) = exp(-sum((valvecs(i-1,:) - centres(j,:)).^2)/(2*r^2));
 end
 predict(i-1,:) = phi*w;
 preds(i-1,pred) = predict(i-1,:);
 valvecs(i,:) = ...
 [valvecs(i-1,length(var)+1:length(var)*de),...
 preds(i-1,var)]';
end

% --
% Validating the network from random starting points
% --

randsample = zeros(3,delay*(validate+de));
randpredict = zeros(validate, length(pred), rtest);
for test = 1:rtest
 warmup = lorenz(delay*(nskip+de), [rand;rand;rand], dt, pars);
 nextstart = warmup(:, delay*nskip);
 temp = lorenz(delay*(validate+de), nextstart, dt, pars);
 randsample(:,:,test) = temp;
 if normalize
 randsample(:,:,test) = (randsample(:,:,test)-mu)./sd;
 end
 randvecs = zeros(validate, length(var)*de);
 temp = randsample(var,1+(0:de-1)*delay,test);
 randvecs(1,:) = temp(:);
 phi = zeros(1,M);
 preds = zeros(validate, 3);
 for i = 2:validate
 for j = 1:M
 phi(j) = exp(-sum((randvecs(i-1,:) - centres(j,:)).^2)/(2*r^2));
 end

30/10/20 11:10 AM C:\EngFiles\ENGSCI700...\appendixA.m 4 of 4

 randpredict(i-1,:,test) = phi*w;
 preds(i-1,pred) = randpredict(i-1,:,test);
 randvecs(i,:) = [randvecs(i-1,length(var)+1:length(var)*de),...
 preds(i-1,var)]';
 end
end

C.2: Logistic Map

53

30/10/20 11:28 AM C:\EngFiles\ENGSCI700\...\logistic.m 1 of 2

% Research results pertaining to the Logistic Map
% Author: Thomas Prince

clear
clc

r = 3.7;
x_0 = 0.5;
n = 300;
x = zeros(1,n);
x(1) = x_0;
for i = 2:n
 x(i) = r*x(i-1)*(1-x(i-1));
end

plot(0:n-1,x,'k')
hold on
scatter(0:n-1,x,'r.')
title(["\textbf{Logistic Map:}", sprintf("$r=%0.2f,x_0=%0.2f,n=%d\\,iterations$",
r,...
 x_0, n)], 'fontsize', 12, 'Interpreter','latex')
xlabel("n",'fontsize', 12, 'Interpreter','latex')
ylabel("x_n", 'fontsize', 12, 'Interpreter','latex')

clear
clc

r = [3.4,3.7,3.74]';
x_0 = 0.5;
n = 50;
x = zeros(length(r),n);
x(:,1) = x_0;
for i = 2:n
 x(:,i) = r.*x(:,i-1).*(1-x(:,i-1));
end

figure()
for i = 1:length(r)
 subplot(1,length(r),i)
 plot(0:n-1,x(i,:),'k',0:n-1,x(i,:),'r.')
 title(sprintf("$r=%0.2f$", r(i)), 'fontsize', 12, 'Interpreter','latex')
 xlabel("n",'fontsize', 12, 'Interpreter','latex')
 ylabel("x_n", 'fontsize', 12, 'Interpreter','latex')
end

clear
clc

r = 3.7;
x_0 = [0.3, 0.3001]';
n = 50;
x = zeros(length(x_0),n);
x(:,1) = x_0;

30/10/20 11:28 AM C:\EngFiles\ENGSCI700\...\logistic.m 2 of 2

for i = 2:n
 x(:,i) = r.*x(:,i-1).*(1-x(:,i-1));
end
figure()
plot(0:n-1,x(1,:),'k',0:n-1,x(2,:),'--r')
legend(sprintf('$x_0=%0.4f$',x_0(1)), sprintf('$x_0=%0.4f$',x_0(2)),...
 'Interpreter','latex')
title(sprintf("Sensitive Dependence: $x_{n+1}=%0.1fx_n(1-x_n)$", ...
 r), 'fontsize', 12,'Interpreter','latex')
xlabel("n", 'fontsize', 12, 'Interpreter','latex')
ylabel("x_n", 'fontsize', 12, 'Interpreter','latex')

References

[1] K. L. Priddy and P. E. Keller, Artificial Neural Networks: An
Introduction. Bellingham, Washington: SPIE Press – The International
Society for Optical Engineering, 2005, isbn: 0-8194-5987-8.

[2] P. Mellodge and D. Feldman. (2020). ‘Complexity Explorer:
Introduction to Dynamical Systems and Chaos.’ Accessed: September,
2020, Santa Fe Institute, [Online]. Available: https : / / www .

complexityexplorer . org / courses / 105 - introduction - to -

dynamical-systems-and-chaos.

[3] R. Kautz, Chaos: The Science of Predictable and Random Motion. New
York: Oxford University Press Inc., 2011, isbn: 978-0-19-959458-0.

[4] C. Rouvas-Nicolis and G. Nicolis, ‘Butterfly effect,’ Scholarpedia, vol. 4,
no. 5, p. 1720, 2009, revision #137268. doi: 10.4249/scholarpedia.
1720.

[5] E. Ott, Chaos in Dynamical Systems, 2nd ed. Cambridge, United
Kingdom: Cambridge Univerity Press, 2002, isbn: 0 521 01084 5.

[6] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors. New York: Springer-Verlag, 1982, isbn: 978-1-4612-5767-7.

[7] V. G. Ivancevic and T. T. Ivancevic, High-Dimensional Chaotic and
Attractor Systems: A Comprehensive Introduction. Springer, 2007,
isbn: 1-4020-5456-4.

[8] E. N. Lorenz, The Essence of Chaos. UCL Press Limited, 1995, isbn:
0-295-97270-X.

[9] J. B. Reece, S. A. Wasserman, N. Meyers, P. V. Minorsky, L. A. Urry,
R. B. Jackson, M. L. Cain and B. N. Cooke, ‘Neurons, Synapses, and
Signalling,’ in Campbell Biology Australian and New Zealand Version,
10th ed. Melbourne, VIC: Pearson Australia Group Pty Ltd, 2015,
ch. 48, isbn: 9781486007042.

[10] C. P. H. Seo, ‘An Artificial Muscle Neuron,’ M.S. thesis, The University
of Auckland, 2014.

[11] W. S. McCulloch and W. Pitts, ‘A Logical Calculus of the Ideas
Immanent in Nervous Activity,’ Bulletin of Mathematical Biology,
vol. 52, pp. 99–115, 1990.

[12] A. Krenker, ‘Introduction to the Artificial Neural Networks,’ in
Artificial Neural Networks – Methodological Advances and Biomedical
Applications, K. Suzuki, Ed. Croatia: InTech, 2011, ch. 1.

56

[13] C. M. Bishop, Neural Networks for Pattern Recognition. New York:
Oxford Uniersity Press Inc., 1995.

[14] OpenStax. (2016). ‘Anatomy & physiology.’ Accessed: October, 2020,
[Online]. Available: http://cnx.org/contents/14fb4ad7- 39a1-

4eee-ab6e-3ef2482e3e22@8.24.

[15] A. Kempa-Liehr, ENGSCI712 Computational Techniques for Signal
Processing, University Lectures, 2020.

[16] C. Unsworth, ‘The Radial Basis Function Neural Network (RBFNN),’
in ENGSCI712 Computational Techniques for Signal Processing, 2020.

[17] (2020). ‘Logistic map.’ Accessed: October, 2020, [Online]. Available:
https://en.wikipedia.org/wiki/Logistic_map.

57

